US 2021/0056146 Al

software application or package. Examples of the descrip-
tive information 104 can include feedback, reviews, ques-
tions, or comments about the software project; source code
for the software project; configuration files or readme files
provided with the software project; keywords characterizing
the software project; a description of the software project; or
any combination of these. The computing device 102 can
obtain the descriptive information 104 from one or more
sources 106 (e.g., over the Internet). Examples of the
source(s) 106 can include one or more websites, such as
discussion forums, repositories, review websites, or any
combination of these. The source(s) 106 can also include
parts of the software project 122, such as readme files,
configuration files, or source code files.

[0012] As one particular example, the computing device
102 can access a website for an online repository. The
website can have a description of the software project 122
and host source code for the software project 122. The
website can also list keywords (e.g., topics or tags) charac-
terizing the software project 122. The keywords may have
previously been input by users or automatically generated by
the website. The website may further have a feedback
section, through which users can post comments, reviews,
questions, and bugs relating to the software project 122. The
computing device 102 can access the website to retrieve
some or all of this information.

[0013] After obtaining the descriptive information 104 for
the software project 122, the computing device 102 can
parse the descriptive information 104 to determine software
features 110 of the software project 122. The software
features 110 can be any functional characteristics of the
software project 122 relating to how the software project
122 works or operates. For example, the software features
110 can include tasks and functions that the software project
122 is configured to perform, frameworks and dependencies
relied on by the software project 122, operating systems and
operating environments for the software project 122, or any
combination of these. The computing device 102 can deter-
mine the software features 110 based on the descriptive
information 104 using any number and combination of
techniques.

[0014] As one particular example, the descriptive infor-
mation 104 may include website content scraped from a
website, such as stackoverlow™. The website content can
include a question relating to the software project 122, along
with keywords characterizing the software project 122. The
keywords may have previously been input by the user
posing the question. In some such examples, the computing
device 102 can determine the software features 110 by
parsing the keywords from the website content and using at
least some of those keywords as the software features 110.
[0015] As another example, the computing device 102 can
apply a count technique to the descriptive information 104
to determine the software features 110. The count technique
can involve counting how many times a particular textual
term occurs in the descriptive information 104 and storing
that count value. For example, if the textual term “Python”
is present 32 times in the descriptive information 104, then
the count for that textual term would be 32. The computing
device 102 can iterate this process to determine counts for
some or all of the textual terms in the descriptive informa-
tion 104. The computing device 102 can then determine
which of the textual terms have counts exceeding a pre-
defined threshold (e.g., 30). Those textual terms may indi-

Feb. 25, 2021

cate particularly important software features. So, at least
some of those textual terms may be designated as the
software features 110. In some cases, a portion of the textual
terms may be filtered out (e.g., using a predefined filter list)
as irrelevant, for example, because they are articles, prepo-
sitions, or otherwise relatively common textual terms that
provide little value, to improve accuracy.

[0016] As still another example, the computing device 102
can apply a machine-learning model 112 to the descriptive
information 104 to determine the software features 110.
Examples of the machine-learning model 112 can include a
deep neural network, a Naive Bias classifier, or a support
vector machine. The machine-learning model 112 can be
configured to analyze textual information and identify soft-
ware features 110 therein. For example, the machine-learn-
ing model 112 may include a deep neural network that is
trained using training data. Each entry in the training data
can include a relationship between a keyword and a flag
indicating whether or not the keyword relates to a software
feature. The machine-learning model 112 can learn these
relationships and then able to reliably predict whether or not
an unknown keyword relates to a software feature.

[0017] The computing device 102 can apply any number
and combination of techniques discussed above to determine
the software features 110 of the software project 122. The
computing device 102 can additionally or alternatively apply
other techniques, such as term frequency-inverse document
frequency (“TF-IDF”), to determine the software features
110 of the software project 122. TF-IDF may involve
generating a numerical statistic that reflects how important
a word is to a document in a corpus. In the present context,
the document may be a file or website associated with the
software project 122 and the corpus is the descriptive
information 104. The TF-IDF value increases proportionally
to the number of times a word appears in the document and
is offset by the number of documents in the corpus that
contain the word, which helps to adjust for the fact that some
words appear more frequently in general.

[0018] Having determined the software features 110 of the
software project 122, the computing device 102 can next
determine a feature vector 114 for the software project 122.
In some examples, the computing device 102 can determine
the feature vector 114 for the software project 122 by first
generating a default feature vector in which all the elements
have default values (e.g., zeros). One simplified example of
the default feature vector can be {0, 0, 0, 0, 0, 0}. Bach
element in the default feature vector can be mapped to a
particular software feature. For example, the elements in the
above default feature vector can be mapped to the following:
{C++, Openshift, Tensorflow, Linux, Machine-learning,
Python}. If the computing device 102 determined that the
software project 122 has a particular software feature, the
computing device 102 can then modify the corresponding
element’s value in the default feature vector to so indicate.
For example, if the computing device 102 determined that
software project 122 relies on “tensorflow” (an open source
machine-learning library for research and production), then
the computing device 102 can change the third element’s
value to one, yielding a feature vector of {0, 0, 1, 0, 0, 0}.
The computing device 102 can repeat this process for each
of the software features 110 to generate the feature vector
114 for the software project 122.

[0019] After generating the feature vector 114 for the
software project 122, the computing device 102 can store the



